Homework \#3 (10 points) - Show all work on the following problems:
(Grading rubric: Solid attempt $=50 \%$ credit, Correct approach but errors $=75 \%$ credit, Correct original solution $=100 \%$ credit, Copy of online solutions $=0 \%$ credit)

Problem 1 (20 points): Given a parallel plate capacitor immersed in sea water with permittivity $\varepsilon=81 \varepsilon_{0}$, permeability $\mu=\mu_{0}$, and resistivity $\rho=0.23 \Omega \mathrm{~m}$, with a sinusoidally varying voltage $V(t)=V_{0} \cos (2 \pi v t)$ with amplitude V_{0} and frequency $v=4 \times 10^{8} \mathrm{~Hz}$ between the plates, what is the ratio between the amplitudes of the conduction current and the displacement current $\overrightarrow{J_{d}}=\frac{\partial \vec{D}}{\partial t}$?

Problem 2 (30 points): Calculate the total electromagnetic energy per unit time transported down a coaxial cable consisting of an inner cylinder with radius a and an outer cylinder with radius b (as in Example 7.13 in Griffiths). Assume the two conductors are held at a potential difference V, with current I flowing along the surface of the inner cylinder and back along the surface of the outer cylinder.

Problem 3 (30 points): Find the electromagnetic force between two equal point charges q separated by a distance $2 a$, by integrating Maxwell's stress tensor over the plane equidistant between the two charges.

Problem 4 (20 points): A charged parallel-plate capacitor (two plates with area A, separated by distance d, carrying charge $+Q$ and $-Q$) has its positively charged plate in the x y plane ($z=0$), and its negatively charged plate at $z=d$. There is thus a uniform electric field E pointing in the +z direction between the plates. In addition, there is a uniform external magnetic field B pointing in the +x direction.

4a (10 points): Find the magnitude and direction of the electromagnetic momentum in the space between the plates, in terms of E, B, A, and d.

4b (10 points): Now assume that a wire with resistance R is connected between the plates, along the z -axis, so that the capacitor slowly discharges. The current through the wire will experience a magnetic Lorentz force. What is the magnitude and direction of the total impulse (Impulse $=\int \vec{F} d t$) delivered to the system by that force during the discharge, in terms of E, B, A, and d ?

